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Abstract—This paper presents the experimental determination
of the ZIP coefficients model to represent (static) modern loads
under varying voltage conditions. ZIP are the coefficients of a
load model comprised of constant impedance , constant current
, and constant power loads. A ZIP coefficient load model is
used to represent power consumed by a load as a function of
voltage. A series of surveys was performed on typical residential,
commercial, and industrial customers in New York City. House-
hold appliances and industrial equipment found in the different
locations were tested in the laboratory by varying the voltage from
1.1-p.u. voltage to 0 and back to 1.1 pu in steps of 3 V to obtain the
individual – , – , and – characteristics. Customer load
tables were built using seasonal factors and duty cycles to form
weighted contributions for each device in every customer class.
The loads found in several residential classes were assembled and
tested in the lab. It was found that modern appliances behave quite
differently than older appliances even from only 10 years back.
Models of the different customer classes were validated against
actual recordings of load variations under voltage reduction.

Index Terms—Commercial class, industrial class, load char-
acteristic, load composition, load model, residential class, ZIP
coefficients.

I. INTRODUCTION

L OAD composition has changed substantially from a few
years back. In the last 10 years, the proliferation of power-

electronic supplies used in many household loads (for example:
flat screen TVs, fluorescent compact lights (CFLs), laptop and
cell-phone chargers) has modified substantially the way loads
behave as the voltage varies [1]–[3]. The lighting industry has
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gone through a significant development in ballast technology,
and today electronic ballasts are more popular than magnetic
ballasts [1]–[5]. In addition to energy savings, electronic bal-
lasts have constant power consumption under voltage variation,
better power regulation, and color consistency. On the other
hand, magnetic ballasts behave as constant impedance loads.
Similarly, outdoor lighting is driving innovation in high-inten-
sity lighting (HID). Within this segment, there has been a major
technology shift from mercury vapor to high-pressure sodium
and, finally, to metal halide lights. New types of indoor and out-
door lights are now being introduced to the market as, for ex-
ample, induction lights and light-emitting diode (LED) lights,
which are expected to dominate the lighting industry due to their
better energy efficiency [3], [6]–[9].
The objective of this paper is to present a ZIP coefficients

model which accurately describes the steady-state behavior of
modern loads under varying voltage conditions. An investiga-
tion on the effect of varying load is introduced by analyzing
individual and composite load structures by means of ZIP coef-
ficients. The work described here is part of a project intended to
estimate the impacts of conservation voltage reduction (CVR)
for customers and utilities. CVR is a technique commonly used
by power utilities to conserve energy by reducing the voltage
delivered to the loads. The main idea is that loads (devices, ap-
pliances, etc.) consume less power when the applied voltage re-
duces. Validation of the composite load model and ZIP coeffi-
cients against field measurements are presented in [27].
The polynomial expression known as the ZIP coefficients

model represents the variation (with voltage) of a load as a com-
position of the three types of constant loads , , and , ,
and stand for constant impedance, constant current, and con-
stant power loads, respectively. The expressions for active and
reactive powers of the ZIP coefficients model are

(1)

(2)

where and are the active and reactive powers at operating
voltage ; and are the active and reactive powers at
rated voltage ; , , and are the ZIP coefficients for
active power; and , , and are the ZIP coefficients for
reactive power.
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TABLE I
SAMPLE SERVICE CLASSES AND THEIR STRATUM CLASSIFICATION

The tasks performed to obtain an accurate load model were:
1) field surveys were conducted for a number of residential,
commercial, and industrial customers in New York City. From
these surveys, information on the composition of their loads was
obtained. A list of the most common appliances and devices
used in each customer class was made; 2) voltage variation tests
(from 1.1 to 0, and then from 0 to 1.1 ) were performed
in the laboratory on both individual devices, and on composite
loads, found for the different customer classes; 3) from these ex-
periments, ZIP coefficient models were built by fitting quadratic
functions to the data using a constrained optimization algorithm;
and 4) actual recordings of load variation under voltage reduc-
tion were compared with results predicted from the models for
each customer class.

II. LITERATURE REVIEW

Load modeling and load characterization studies have been
performed for a long time. A study performed in 1923 obtained
a miniature model for an ac network with details of the network
components [10]. The study compared the actual system and the
miniature model under varying load. A study performed in 1973
addressed composite loads and load parameters and included the
effects of feeders and distribution transformers [11]. The voltage
and frequency dependency of these composite loads were also
investigated.
In 1992, an IEEETask Force published a paper on “LoadRep-

resentation for Dynamic Performance Analysis,” summarizing
the current status on power system load modeling [12]. Defini-
tions of basic load modeling concepts were explained and the
importance of further developments in load modeling was dis-
cussed. Numerous studies comparing the performance of load
modeling have been published (see [12]–[15]). A mathemat-
ical expression relating load characteristics to depressed voltage
levels by means of the sum of constant impedance (Z), constant
current (I), and constant power (P) components, was introduced
by Kalinowsky and Forte in 1981 [16]. However, the use of such
a linear combination was first introduced by Kent et al. in 1969
[17]. The ZIP coefficients model has been widely used to rep-
resent the relation between voltage and power characteristics of
loads [18], [19].

III. CUSTOMER CLASSES

Load composition of customers plays a significant role in de-
termining the appropriate load model. Load composition varies
according to many factors such as the type, size, behavior of the
customer, and recent advances and upgrades in equipment tech-
nology. In this study, load composition is organized based on
the customer class with a recognized load profile.

TABLE II
TYPICAL RESIDENTIAL LOAD STRUCTURE

A “load component” is here defined as the aggregate equiva-
lent of all devices with similar behavior; for example: electrical
heating (ambient and water), motor loads (air conditioners,
pumps), and power-electronics loads (fluorescent lights, TVs,
chargers). Customers are generally grouped into three major
classes: 1) residential; 2) commercial; and 3) industrial; see
[20]. In each class, the load consists of the sum of several
different “load components,” each of which contributes some
fraction to the total load; see [21]. As a result, different types
and quantities of loads may be connected or disconnected in a
power system during a day. It is known that the load composi-
tion of each class exhibits different behavior with the change
in weather conditions, economical situation, and culture [22],
[23].
Three approaches exist for load modeling: measure-

ment-based models, disturbance-based models, and com-
ponent-based models [24], [25]. For the purpose of this study,
the component-based approach is adopted, since it has been
widely used in load flow and stability studies; has the advan-
tage of not requiring field measurement; and can be applied to
different operating conditions [23].
To implement the component-based approach in this study,

customers in New York City were identified based on their load
shape for their hourly demand. Load shape depends on: 1) the
type of day (weekday or holiday); 2) service class (SC), which
represents a group of customer types with similar load charac-
teristics (i.e., residential, small commercial, large commercial,
and industrial); 3) stratum: each service class is decomposed
into subgroups, or strata, within a service class based on cus-
tomer size, as measured by a particular billing quantity (details
are given below); and 4) temperature. Table I shows samples of
service classes with their stratum billing variable.

IV. LOAD SURVEYS

To investigate load profiles of each customer class in a tar-
geted network, surveys were conducted in several sites of the
network. This gave an accurate estimation of load composition.
Onsite visits were performed on different customer classes, and
information on the details of each customer load was recorded.
The surveys were aimed to obtain the nature of loads in each
customer class, the electrical data, the total number of equip-
ment being used, and how often those pieces of equipment were
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TABLE III
CLASSIFICATION OF RESIDENTIAL STRATA BASED ON ANNUAL CONSUMPTION

Fig. 1. Reconstructed active and reactive power curves for small commercial
customers. These power curves use the ZIPs coefficients obtained with actual
cutoff voltage reported in the second half of Table VII.

TABLE IV
EQUIPMENT CONTRIBUTION FOR HIGH SCHOOL AND HOTEL

connected or disconnected during the day. In addition, the be-
havior of each load class varies with the change of weather, type
of activity, and economic situation. Survey data provided guid-
ance for the selection of the equipment to test in the laboratory.
The survey data, for a service class, were extracted and cate-

gorized based on equipment characteristics. The types of loads
observed during the surveys fall into the following categories:
• lighting equipment: fluorescent, incandescent, halogen,
compact fluorescent lights (CFL), and high-intensity dis-
charge (HID) lights;

• elevators: hydraulic, pneumatic, and traction;
• air handling: HVAC, chillers, fans, and heat pumps;
• pumps: hot and cold water circulation, chiller pumps, fire
pumps, and centrifugal pumps;

• compressors: air compressors and industrial freezers;
• household appliances: refrigerators, freezers, warmers,
ovens, and microwaves;

• power-electronics devices: power supplies, chargers, TVs,
game consoles, computers, and peripherals.

For the purpose of creating an accurate customer load model,
each customer load was classified based on running load versus
annual load. Since running loads change depending on the
temperature, seasons were chosen according to the climate
of New York City. Load tables for every surveyed customer
were formed into seasonal results. Since climate and energy
consumption are closely coupled, each customer class was
formed with three seasons: spring/fall, summer, and winter, as
loads and consumption vary depending on the season. Spring
and fall seasons were combined together, since there is no
significant difference between them.
Using the survey information, load tables were built with load

component information for every season. Each load component
was correlated with a duty cycle, and with a seasonal use factor,
since loads do not run all of the time, and their characteristics
vary. The total seasonal energy consumption was computed by
summing the correlated load component power consumptions.
This was done in order to build an accurate detailed load model
for each class, taking into account climate change, energy con-
sumption, and the running loads during a season. The load tables
so obtained were validated by comparing the calculated hourly
power consumption with utility records of hourly energy con-
sumption for a whole year for every surveyed customer. Con-
sumption reports are divided based on defined seasons, and the
average hourly peak load for every season was formed. Seasons
are defined as follows: spring/fall: March, April, May, June, Oc-
tober, and November; summer: July, August, and September;
winter: December, January, and February. The energy consump-
tion for every season matched very well with the actual sea-
sonal average peak kilowatt-hours for the surveyed customers.
The constructed load table for a typical residential customer is
shown in Table II.
In Table II, the duty cycle indicates the relative time that

the equipment is connected. Season factor indicates the rela-
tive time that the equipment is in use. Season factor varies as
load configuration changes with season (spring/fall, summer,
and winter). Both season factor and duty cycle are fractions of
a 24-h period, and have a value between 1 and 0.
The actual power of a single item of equipment, and the total

component power in a class, is calculated as

Actual equipment power

equipment rated power

duty cycle season factor (3)

Total component power

actual equipment power

Total number of equipment (4)
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TABLE V
EQUIPMENT CONTRIBUTION WEIGHT IN% PER CLASS (SUMMER)

TABLE VI
ACTIVE AND REACTIVE ZIP MODEL PER CUSTOMER CLASS (SUMMER)

A. Residential Customers

Surveys were performed on different size dwellings (ranging
from studio apartments to a large house) to determine, in detail,
which household appliances were used in each dwelling. This
information was used to construct a set of residential load tables
depending on the size and power consumption of the residential
unit.
Consolidated Edison Inc (the utility company of New York

City) classifies the residential class into six subclasses (or strata)
A, B, C, D, E, and F based on annual peak power consumption
records; see Table III.

B. Commercial Customers

Commercial sites are designated as either “large” or “small”
by Consolidated Edison. Each of these two groups is divided
into different subclasses, according to their annual peak power,
as for the residential subclasses. Surveys were conducted of
four small commercial businesses: a supermarket; a restaurant;
a laundromat; and an optical store. Also, two large commercial
establishments (a school and a hotel) were surveyed.
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TABLE VII
ACTIVE AND REACTIVE ZIP MODEL. FIRST HALF OF THE ZIPS WITH 100-V CUTOFF VOLTAGE.

SECOND HALF REPORTS THE ZIPS WITH ACTUAL CUTOFF VOLTAGE

Detailed information was obtained. Load tables for each
commercial customer were built and the total energy consump-

tion was computed. Utility records of annual consumption with
hourly recordings for each surveyed location exist. Comparison
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Fig. 2. Residential strata constructed active (left) and reactive (right) power
curves. These power curves are using the ZIPs coefficients obtained with actual
cutoff voltage reported in the second half of Table VII.

Fig. 3. Active and reactive test results with constrained curve fitting. The ZIP
curve with the 100-V cutoff is shown in the solid line and ZIP with the actual
cutoff voltage in the dashed line. The two sets of ZIPs are shown in Table VII.

of these records with computed power consumption for each
season showed very good agreement.
1) Small Commercial Customers: Commercial customers

vary depending on the type of load used by them to conduct
their business activities. For example, laundromat loads are
mostly motor driven, while the load of a restaurant is pri-
marily resistive. The selection of surveyed customers included
businesses with: an HVAC system with resistive heating; a
centralized ac system with gas heating, and a normal air con-
ditioning system. This was done in order to ensure a complete
investigation of the small commercial class.
Fig. 1 shows how active and reactive powers vary for

each surveyed customer. Customers having mainly constant
impedance equipment (i.e., restaurant and optical store) have

Fig. 4. Comparison of active and reactive powers between old and new
appliances.

a higher variation of active and reactive power under voltage
reduction. The supermarket load is dominated by the HVAC
system with a constant power load behavior. The laundromat
almost has a constant current load model. Load topology of
a small commercial class varies depending on their type of
business activity and their location in New York City. These
different load combinations were used to define multiple small
commercial classes with a weighted percentage given to each
customer load table in order to create a general small commer-
cial load model. A formula for computing small commercial
class ZIP coefficients is provided below; see (7)
2) Large Commercial Customers: Load tables for those sur-

veys were constructed and checked against utility records of the
average consumption for the three seasons. Table IV shows the
percent contribution of equipment for the two customers under
study.
Customers in this class have high energy demand and dif-

ferent load behavior depending on the type of business. In gen-
eral, to fully represent loads in this category, public as well
as private customers should be included in the survey. In ad-
dition, heating, cooling, and street lighting loads largely con-
tribute in this class, but may differ because of building struc-
ture and construction year. To take into account the different
customer load compositions in this class, an electrically heated
customer (hotel) and a gas-heated customer (high school) were
surveyed.

C. Industrial Customers

Two large industrial customers were surveyed. One is a
pipeline transportation and energy storage customer and the
other is a water treatment plant. Most of the loads found in the
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plants are motor-driven pumps and compressors. The collected
load information for the power plants was used to formulate
the load table and to compute equipment weight. The total
calculated energy consumption matched utility records of the
average seasonal peak in the annual metered demand.
In general, equipment weight percentages and class ZIP co-

efficients were calculated as follows:

Equipment weight
load component power

class power
(5)

(6)

(7)

(8)

Equipment contribution weight in percent per class is shown
in Table V for the summer season and the ZIP model per cus-
tomer class in Table VI.

V. EXPERIMENTS

The setup for the laboratory experiments consisted of a power
source, a power analyzer, and computer software. These three
elements were used in automated testing to perform tests under
identical conditions so that reliable results would be obtained.
Voltage reduction tests were performed on each device, and
the behavior of these loads was recorded. Prior to each test,
loads were operated under nominal voltage in steady state for
30 min to avoid the transient behavior of the cold start. Then,
the voltage was decreased from 130 to 0 V in steps of 3 V and
kept for 20 s at each step. A settling down period was allowed
at each voltage step to prevent any undesired transient. For each
step, voltage , current , active power , and re-
active power were recorded.

A. Isolated Appliances and Equipment

To create a load profile for each surveyed customer, the ef-
fect of varying load demand on equipment was investigated.
Laboratory experiments were performed on single-phase and on
three-phase loads. For several of these tests, loads were built
in order to simulate real operating conditions. In most cases,
the actual device was used for the test. However, some of the
motor loads were emulated. For example, a water pump system
was constructed using a centrifugal pump connected to a storage
tank through pipes; then pressure was applied using valves. The
operation of elevators was emulated with an induction motor

and a controllable dynamometer was controlled to offer con-
stant torque.
During the voltage reduction procedure, loss of load func-

tionality determined the cutoff voltage . We noted,
however, that some pieces of equipment continued to consume
reactive power even when no work was delivered; examples
are induction motors and air compressors. Other loads, such as
ballasts and LCD TVs, did not fully stop working, but mani-
fested fluctuations. These experiments provided the correlation
between voltage and power (active and reactive) of those loads.
The recorded data that fell into the range between 100 to 130 V
were used for the curve-fitting process. This is so because the
final objective of the project is to assess the load behavior for
conservation of voltage reduction studies. Table VII shows the
equipment tested in the lab and the generated ZIP coefficients.

B. Assembled Customer Classes

By using the survey information, several customer class loads
were reconstructed in the laboratory. Residential strata A, B,
C, and D were assembled and voltage reduction tests were per-
formed following the same procedure used for isolated appli-
ances. To ensure the accuracy of customer models, the assem-
bled load composition test results were compared with the re-
constructed load shape of the strata. The reconstruction process
started with the calculation of active power and reactive
power demand for each appliance used in the particular res-
idential load under study. Next, active and reactive powers were
calculated for each load. A simple calculation of the active and
reactive powers as a function of voltage for an LCD television
is shown in the following equation:

(9)

(10)

where is the input voltage and varies from 130 to 100 V in
steps of 3 V.
Then, the sum of active and reactive powers for each appli-

ance in the load table was calculated with

(11)

(12)

Then, active and reactive power curves were plotted and com-
pared with measurements of the assembled load composition
tests. Fig. 2 shows the reconstructed active and reactive power
curves using the computed ZIP coefficients for different resi-
dential strata.
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VI. CALCULATION OF ZIP COEFFICIENTS

A. Method

To obtain this model, for each appliance, active power and
reactive power for different voltage levels were measured (see
Fig. 3).

B. Calculation of Parameters

If the equipment is a three-phase load, the nominal voltage
for the fit is set to 208 V. On the other hand, if the load is a

single-phase load, the nominal voltage is set to 120 V. To obtain
the values of and corresponding to 120 V or 208 V, we
performed a preliminary least-square fit in the nominal voltage
region . To increase the accuracy of the modeling
procedure, a constrained least square was introduced with an
optimization routine implemented to deliver the best fit with the
constraint that the sum of the three ZIP coefficients has to add
to 1. The optimization problem is formulated as follows:

(13)

Subject to (14)

and

(15)

Subject to (16)

Fig. 3 shows active and reactive power curves of the voltage
reduction tests for selected pieces of equipment. The figure also
shows the corresponding fitted curves obtained between 100 and
130 V (to cover the range for CVR studies) and between the
actual cutoff voltage and 130 V to be used for other studies; for
example, cold-load pickup studies.

C. Comparison Between Old and New Loads

A study similar to the one described here was performed in
1999 for Consolidated Edison for different appliances and to de-
termine residential and commercial models as static loads [26].
Due to the rapid change in technology, load models needed to be
updated to account for the variation of power system load char-
acteristics. A comparison is now presented between the new re-
sults and those of the previous study to see how the behavior of
modern loads differs from that of older loads.
Fig. 4 shows a comparison of selected appliances; one can

note important differences. Within the past decade, electronic
ballasts with their constant power behavior replaced magnetic
ballasts that follow a constant current curve. New electronic bal-
last technology has significantly improved from 10 years ago
with a better active power regulation over a variety of input
voltages. One of the most important characteristics of new elec-
tronic ballast circuits is the degree to which they control the
lamp power with changes in input voltage. Tests show that new
electronic ballasts consume constant active power between 1.1

and 0.8 input voltage. The behavior of reactive power
for magnetic and electronic ballasts has also changed as old bal-
lasts resembled constant current loads while the reactive power
of new ballasts tends to increase or decrease depending on the
supplied voltage level.
With the fast growth of switching power supplies used in

LCD TVs and laptop chargers, the consumption and behavior
differ from old appliances (CRT TVs). Some appliances today
are equipped with power factor correction; for example, the
LCD TVs have a slightly leading power factor. By comparing
tests of the CRTs from the old study with the new test for the
LCD TV, one can see that the reactive power behaves quite dif-
ferently. Most of the compared appliances indicate that major
changes have occurred in their active and reactive power be-
havior. The study shows that it is essential to update the model
for appliances to obtain the correct analysis and design of the
network.

VII. CONCLUSION

The paper has presented experimentally verified ZIP coeffi-
cient models for the most commonly used appliances and for
different customer classes. Surveys were performed to deter-
mine which appliances and pieces of equipment were available
in the different dwellings and businesses in New York City. The
loads found in several residential classes were assembled and
tested in the lab. It was found that modern appliances behave
quite differently than older appliances even from 10 years ago.
The model of the different customer classes has been validated
against actual recordings of load variations under voltage reduc-
tion in several networks served by Con Edison.
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